首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55192篇
  免费   4778篇
  国内免费   2822篇
电工技术   1864篇
综合类   3482篇
化学工业   13156篇
金属工艺   7533篇
机械仪表   2242篇
建筑科学   5613篇
矿业工程   980篇
能源动力   2339篇
轻工业   2383篇
水利工程   465篇
石油天然气   1174篇
武器工业   676篇
无线电   2361篇
一般工业技术   12745篇
冶金工业   2519篇
原子能技术   354篇
自动化技术   2906篇
  2024年   179篇
  2023年   1699篇
  2022年   1628篇
  2021年   2233篇
  2020年   2374篇
  2019年   2146篇
  2018年   1991篇
  2017年   2368篇
  2016年   2573篇
  2015年   2543篇
  2014年   3372篇
  2013年   4801篇
  2012年   3372篇
  2011年   3311篇
  2010年   2715篇
  2009年   2810篇
  2008年   2236篇
  2007年   3000篇
  2006年   2833篇
  2005年   2340篇
  2004年   1874篇
  2003年   1762篇
  2002年   1556篇
  2001年   1373篇
  2000年   1135篇
  1999年   927篇
  1998年   705篇
  1997年   642篇
  1996年   533篇
  1995年   416篇
  1994年   364篇
  1993年   298篇
  1992年   180篇
  1991年   148篇
  1990年   94篇
  1989年   60篇
  1988年   48篇
  1987年   29篇
  1986年   9篇
  1985年   19篇
  1984年   25篇
  1983年   7篇
  1982年   13篇
  1981年   2篇
  1980年   18篇
  1979年   13篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
31.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
32.
《Ceramics International》2022,48(4):5312-5320
Ce3+ and Pr3+ co?doped Lu3Al5O12 phosphors were synthesized by the sol–gel process, and their crystal structure, photoluminescence (PL) properties, and energy transfer (ET) from the Ce3+ to Pr3+ were studied. The Lu2.94?yAl5O12:0.06Ce3+, yPr3+ phosphors (0.002 ≤ y ≤ 0.008) showed the green?yellow emission from the 2D3/2 → 2F5/2, 7/2 transition of Ce3+ and the red emission at 610 and 637 nm, which were caused by the 1D23H4 and 3P03H5 transitions of Pr3+, respectively. The optimal concentration of Pr3+ for efficient ET was found to be x = 0.006. The electric quadrupole?quadrupole interaction was responsible for the concentration quenching in the Lu2.94?yAl5O12:0.06Ce3+, yPr3+ phosphors, based on Dexter's theory. The incorporation of Pr3+ for Lu3+ enhanced the red PL intensity in the Lu2.94Al5O12:0.06Ce3+ phosphor.  相似文献   
33.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
34.
In the offshore oil and gas industry, mainly focusing on the use of rigid or flexible pipes of subsea infrastructure applied to risers or flowlines, one of the greatest difficulties is the interpretation of the combined effects of the various correlated phenomena (hydrodynamic effects of intermittent flow, the effects of corrosivity of the environment in addition to variations in pressure, temperature, and dynamic loading). On the basis of this scenario, defining the degree of severity of each of the correlated system variables becomes of fundamental importance for establishing reliable criteria for selecting materials for subsea application. The established flow pattern directly affects the corrosion rate (or the pipe material mass loss), but the balance of other variables including possible changes in the physical and transported fluid chemical properties may increase the damage up to an order of magnitude, which is a piece of information normally not foreseen in design criteria. Therefore, to improve the understanding of the corrosion study influenced by multiphase flow, a testing loop was designed and assembled at the Corrosion and Protection Laboratory of the Institute for Technological Research, in which API X80 steel coupons were positioned in locations with a 0° and 45° inclinations. Tests were conducted by varying the partial pressure of the gaseous phase containing blends of CO2 and H2S with N2 balance, mixed with the liquid phase containing light oil and heavy oil in water with salinity (NaCl)-simulating oil well conditions with 80% water cut. The main objective of this study is to establish models that can predict the corrosion intensity in conditions close to those obtained experimentally. To achieve results, the multiple regression and Box–Cox transformation methods were applied. These models will make possible damage prediction and optimization of matrix parameters for the multiphase-loop test.  相似文献   
35.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   
36.
A micromembrane adsorber with deep-permeation nanostructure (DPNS) has been successfully fabricated by flowing synthesis. The nanoparticles are in-situ assembled in membrane pores and immobilized in each membrane pore along the direction of membrane thickness. The nanoparticles with a lower size and thinner size distribution can be achieved owing to the confined space effect of the membrane pores. As a concept-of-proof, the nano ZIF-8 and ZIF-67 are fabricated in porous membrane pores for methyl orange (MO) and rhodamine B (RhB) adsorption. The adsorption rate is increased significantly owing to the enhanced contact and mass transfer in the confined space. The adsorption capacity for the RhB is also increased, since the size of the nanoparticles assembled in membrane pores is smaller with more active sites exposed. This micromembrane adsorber with DPNS has good reusability and can provide a promising prospect for industrial application.  相似文献   
37.
Computational screening was employed to calculate the enantioseparation capabilities of 45 functionalized homochiral metal–organic frameworks (FHMOFs), and machine learning (ML) and molecular fingerprint (MF) techniques were used to find new FHMOFs with high performance. With increasing temperature, the enantioselectivities for (R,S)-1,3-dimethyl-1,2-propadiene are improved. The “glove effect” in the chiral pockets was proposed to explain the correlations between the steric effect of functional groups and performance of FHMOFs. Moreover, the neighborhood component analysis and RDKit/MACCS MFs show the highest predictive effect on enantioselectivities among the four ML classification algorithms with nine MFs that were tested. Based on the importance of MF, 85 new FHMOFs were designed, and a newly designed FHMOF, NO2-NHOH-FHMOF, with high similarity to the optimal MFs achieved improved chiral separation performance, with enantioselectivities of 85%. The design principles and new chiral pockets obtained by ML and MFs could facilitate the development of new materials for chiral separation.  相似文献   
38.
Recent studies have demonstrated that dihydrophenazine (Pz) with high redox-reversibility and high theoretical capacity is an attractive building block to construct p-type polymer cathodes for dual-ion batteries. However, most reported Pz-based polymer cathodes to date still suffer from low redox activity, slow kinetics, and short cycling life. Herein, a donor–acceptor (D–A) Pz-based conjugated microporous polymer (TzPz) cathode is constructed by integrating the electron-donating Pz unit and the electron-withdrawing 2,4,6-triphenyl-1,3,5-triazine (Tz) unit into a polymer chain. The D–A type structure enhances the polymer conjugation degree and decreases the band gap of TzPz, facilitating electron transportation along the polymer skeletons. Therefore the TzPz cathode for dual-ion battery shows a high reversible capacity of 192 mAh g−1 at 0.2 A g−1 with excellent rate performance (108 mAh g−1 at 30 A g−1), which is much higher than that of its counterpart polymer BzPz produced from 1,3,5-triphenylbenzene (Bz) and Pz (148 and 44 mAh g−1 at 0.2 and 10 A g−1, respectively). More importantly, the TzPz cathode also shows a long and stable cyclability of more than 10 000 cycles. These results demonstrate that the D–A structural design is an efficient strategy for developing high-performance polymer cathodes for dual-ion batteries.  相似文献   
39.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
40.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号